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Confined swirling jets with large expansion ratios
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This paper presents the extension of our previous investigation of confined round jets
with large Reynolds numbers and large expansion ratios (Revuelta, Sánchez & Liñán
2002a) to the case of swirling jets with swirl numbers of order unity. In the absence of
vortex breakdown, we encounter the four-region asymptotic structure identified earlier
for the non-swirling jet, including a region of jet development where the azimuthal and
axial velocity components are comparable. For the flow in the long recirculating eddy
that forms downstream, where the pressure differences associated with the azimuthal
motion become negligible, the jet is found to act as a point source with momentum
flux equal to the flow force of the incoming jet, and angular momentum flux equal to
that of the jet at the orifice. The solution for the weak circulation in this slender region,
including the parameter-free leading-order description and the first-order corrections,
is determined by integrating the azimuthal component of the momentum equation
written in the boundary-layer approximation. The results are validated through
comparisons with numerical integrations of the steady axisymmetric Navier–Stokes
equations, which are also used to evaluate critical conditions for vortex breakdown.

1. Introduction
We consider the confined laminar jet formed when an incompressible fluid of density

ρ and kinematic viscosity ν flows through a pipe of radius εa into a much larger
coaxial pipe of radius a. We shall assume that the jet Reynolds number Rej =
[J/(πρ)]1/2/ν, based on the jet momentum flux J at the orifice, is much larger than
unity, but still sufficiently small that the resulting steady slender jet remains stable.
This configuration was investigated for the non-swirling jet by Revuelta, Sánchez &
Liñán (2002a, henceforth denoted as RSL), in the distinguished double limit in which
the value of the Reynolds number Rej ε for the final Poiseuille flow is of order unity.
This previous paper identified the four regions sketched in figure 1: a slender jet
region J of characteristic length Rej εa where the jet develops as a free jet with con-
stant momentum flux J , a surrounding outer region O of slow motion driven by the
jet entrainment, a main flow region M of characteristic length Rej a where the jet
exchanges momentum with the outer recirculating flow, and a final transition region
T of characteristic length Rej εa to the final Poiseuille flow.

The present paper extends our previous analysis by considering the case of swirling
jets. The swirl ratio S = L/(Jεa), constructed with the initial flux of angular momen-
tum, L, will be assumed to be of order unity, so that the azimuthal and axial velocity
components are initially comparable in the slender region of jet development, and
may lead to vortex breakdown as the value of S is increased to a critical value Sc.
A number of papers, including Hall (1972), Leibovich (1978), Escudier (1987), and
Shtern & Hussain (1999), have reviewed the topic of vortex breakdown in both
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Figure 1. A schematic of the confined swirling jet flow.

confined and unconfined flows. The swirling-jet configuration considered here is
relevant to combustion applications such as the dump combustor, for which the onset
of breakdown is key for flame stabilization (see e.g. Poinsot & Veynante 2001).

The main objective of the present study is the description of the flow structure found
in the absence of vortex breakdown, i.e. for S <Sc, when we encounter the four regions
identified for the non-swirling jet in RSL. In the slender jet that develops in region J,
not affected by the outer confinement, the radial pressure differences associated with
the azimuthal motion are of the order of the jet dynamic pressure. The induced
adverse pressure gradient decelerates the jet significantly as it develops, reducing its
momentum flux from the initial value J to a final value equal to the jet flow force M ,
while the flux of angular momentum remains constant. On the other hand, the radial
pressure differences associated with the azimuthal motion become negligible outside
the region of jet development. Consequently, the radial and axial motion reduce in the
first approximation to those induced by a swirl-free point source of momentum with
momentum flux M < J , so that the results of RSL can be conveniently rescaled to
provide the corresponding flow description. The weak swirling motion is determined
a posteriori by integrating the azimuthal component of the momentum equation, with
the jet acting in this case as a point source of angular momentum flux L, equal to
the value at the orifice. The values of M and L are used for the description of the
circulation in region M, which reduces at leading order to a parameter-free problem
independent of the shape of the velocity and circulation profiles at the orifice. The
analysis determines the circulation distributions as the boundary regions O and T are
approached, which are self-similar solutions of the second kind in which the exponents
for the power-law decay with axial distance are obtained as eigenvalues for the two
different local problems that appear. These asymptotic and local solutions are relevant
for the study of jet precession, a phenomenon frequently observed in flows in burners,
cyclone separators and spray dryers (Nathan, Hill & Luxton 1998; Nathan, Turns &
Bandaru 1996). In particular, the description of the steady flow field in the different
regions constitutes the base flow to enable the linear stability analysis in the limit
configuration of large expansion ratios, which could provide limiting values for the
oscillation frequencies, additional to those determined by numerical simulations (Guo,
Langrish & Fletcher 2001a, b). The results given below are validated by performing
integrations of the steady, axisymmetric, Navier–Stokes (NS) equations, which are
also used to explore the onset of vortex breakdown in confined swirling jets with
large expansion ratios.

2. Formulation
To write the governing equations in dimensionless form it is convenient to use as

scales those corresponding to the main region, which are constructed with the initial
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fluxes of momentum and angular momentum J and L. Thus, we define dimensionless
axial and radial velocity components v = v′/(ν/a) and û= u′/[J/(πρa2)]1/2, along with
a dimensionless pressure p̂ =p′/[J/(πa2)]. The swirling motion is measured with the
circulation of the azimuthal velocity Γ ′ =2πr ′u′

θ , which is scaled with its characteristic
value L/[ρJa2/(4π)]1/2 to give the variable Γ̂ . The associated NS equations take the
form
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where r and x̂ represent the radial and axial distances from the orifice centre scaled
with a and Rej a. The boundary conditions at x̂ = 0 are

0 � r � ε : û = ε−1Ui, v = 0, Γ̂ = ε−1Γi, (2.5)

ε < r � 1 : û = v = Γ̂ = 0, (2.6)

where the flow perturbations arising in the pipe upstream from the exit orifice are not
accounted for, an appropriate simplification for the values Rej � 1 considered here.
For x̂ > 0 the solution must satisfy the regularity condition at the axis

r = 0 : ∂û/∂r = v = Γ̂ = 0 (2.7)

together with the non-slip condition on the confining duct

r = 1 : û = v = Γ̂ = 0, (2.8)

while far downstream the flow must approach the swirl-free Poiseuille profile

x̂ � 1 : û = 2q(1 − r2)ε, v = Γ̂ = 0, (2.9)

with the constant q =
∫ ε

0
2ε−2rUi dr , of order unity, denoting the jet volume flux scaled

with its characteristic value (πε2a2J/ρ)1/2. As can be seen, the solution depends on the
three parameters ε, Rej and S, and on the form of the initial velocity and circulation
profiles at the jet orifice, Ui and Γi . The integrations performed below correspond to
a jet of initial uniform velocity Ui = 1 and with solid-body rotation Γi = 2(r/ε)2.

In the slender jet region J, corresponding to axial distances of order Rej εa and to
radial distances of order εa, the flow is in the first approximation that of an unconfined
swirling jet discharging into an infinite stagnant atmosphere. In the absence of vortex
breakdown, the quasi-cylindrical approximation can be used to provide the velocity
field, with relative errors of order Re−2

j . The resulting equations can be written in terms
of the rescaled variables of order unity, r/ε, x̂/ε, εû, εv, ε2p̂, and εΓ̂ , by discarding
the last term in (2.2) and (2.4) and retaining only the terms in curly brackets in
(2.3). The problem was recently integrated numerically by Revuelta, Sánchez & Liñán
(2004) for Ui = 1 and Γi = 2(r/ε)2. For values of S above a critical value S = 0.64,
the integration fails to converge at a given downstream location, a failure that Hall
(1972) associates with the emergence of vortex breakdown, a point supported by the
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numerical integrations of confined swirling flows in pipes performed by Beran &
Culick (1992) and Herrada, Pérez-Saborid & Barrero (2003).

The velocity and circulation in the developing jet are seen to satisfy the conservation
of angular momentum

∫ r � ε

0
2rûΓ̂ dr = 1, together with the momentum balance

equation ∫ r�ε

0

2r(p̂ + û2) dr = m. (2.10)

This last equation describes how the dimensionless momentum flux of the jet∫ r � ε

0
2rû2 dr decreases from the initial value

∫ ε

0
2rû2 dr = 1 at the orifice to the final

asymptotic value
∫ r � ε

0
2rû2 dr = m as the pressure perturbations become negligible

in the far field, where the solution for the velocity is that given by Schlichting (1933)
for the swirl-free jet:

û =
m

x̂ + εX0

512/3

(64/3 + η2)2
, (2.11)

while the weak circulation is

Γ̂ =
1

x̂ + εX0

16η2

(64/3 + η2)2
, (2.12)

a result due to Görtler (1954) and Loitsianskii (1953). Here, η =m1/2r/(x̂ + εX0)
represents the appropriate self-similar variable for the far-field description and the
constant X0 appearing as a first-order correction is the so-called virtual origin,
to be computed from the numerical integration of the jet development region
(Revuelta, Sánchez & Liñán 2002b). The value of the dimensionless flow force
m =M/J = 1 +

∫ ε

0
2rp̂i dr , giving the ratio of the momentum flux of the developed

jet M to the initial momentum flux J , can be computed by evaluating (2.10) at the
orifice, where the radial pressure differences p̂i = − S2

∫ ε

r
Γ 2

i /r3 dr are determined
from the radial momentum balance in terms of the initial circulation Γi , yielding for
instance m =1 − S2 for solid-body rotation.

3. Swirling motion in the main region M
We now proceed to study for S <Sc the flow in the slender recirculating region

M that extends downstream over distances of order Rej a from the jet orifice, where
the motion is driven by the developed jet. This acts as a point source of momentum
with angular momentum flux L, equal to that of the jet at the orifice, and with
momentum flux M , smaller than the value J at the jet orifice. The momentum flux
M of the developed jet is used as scale to define x = m−1/2x̂, u =m−1/2û, Γ = m1/2Γ̂

and p =m−1p̂ as appropriate variables for this region M. In the limit Rej � 1 with
Rej ε ∼ 1 equations (2.1) and (2.2) reduce, with relative small errors of order Re−2

j ∼ ε2,
to the boundary-layer (BL) equations, to be integrated for u, v and p independently
of the circulation, which is determined by integrating

u
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obtained from (2.4) at the same level of accuracy.
As explained in RSL, the boundary conditions for the velocity as x → 0 arise from

matching with the flow in the intermediate boundary region ε � x � 1, where the flow
near the axis has developed to give the self-similar profile (2.11), whereas for r ∼ O(1)
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Figure 2. The functions H (r), H̃ (r), G1(r), Ḡ1(r), g1(η), and g̃1(η); the dashed line represents
the radial distribution of the normalized circulation Γ/Γmax determined at x = 0.177 by
numerical integration of (3.1).

the flow is directed towards the backstep with a local self-similar velocity profile
u = [x + m−1/2ε(X0 − q/8)]F ′/r , with F (r) representing an appropriately rescaled
stream function. Integrating the BL equations with boundary conditions u = v = 0 at
r = 1 and ∂u/∂r = v = 0 at r = 0 for x > 0 and with the initial profile u =(512/3)/(x +
m−1/2εX0)

−1[64/3 + r2/(x + m−1/2εX0)
2]−2 + [x + m−1/2ε(X0 − q/8)]F ′/r evaluated at

ε � x � 1 provides, with errors of order ε2, the solution for u, v and p in the main
recirculating region. The solution at leading order, determined by setting ε =0 in the
initial velocity profile, has a zero mass flux, and results in a closed eddy that ends at
a stagnation plane located at x = xs . The mass flux is accounted for in the first-order
correction, which allows the flow to approach Poiseuille’s solution u =2m−1/2q(1− r2)
downstream.

3.1. The initial circulation profile

The weak swirling motion present in M is determined by integrating the linear
equation (3.1). The integration uses as boundary condition the initial circulation
profile appearing at ε � x � 1. The Gortler–Loitsiatskii jet solution (2.12), which
appears near the axis, needs to be complemented with the solution at distances
r ∼ O(1). The asymptotic behaviour Γ → 16x/r2 of (2.12) for r � x motivates the
selection Γ =[x+m−1/2ε(X0−q/8)]H +m−1/2ε(q/8)H̃ as the appropriate local solution
describing the decay of the Gortler–Loitsiatskii circulation at distances r of order
unity. The function H (r) and its first-order correction H̃ , required to satisfy the
matching with (2.12), are determined from the problems

H ′′ + (F − 1)H ′/r − F ′H/r = 0; H (1) = 0, H (r → 0) → 16/r2, (3.2)

H̃ ′′ + (F − 1)H̃ ′/r = 0; H̃ (1) = 0, H̃ (r → 0) → 16/r2, (3.3)

giving the solution shown in figure 2.
According to the above description, the circulation decreases linearly with distance

as the backstep is approached. The circulation surrounding the jet is however much
larger, and is due to the swirling flow that recirculates to approach the backstep wall
from region M. To determine the solution, one needs to investigate the existence of
eigensolutions of the form Γ = Cn[x +m−1/2ε(X0 −q/8)]λnGn(r) where the eigenvalues
λn and accompanying eigensolutions Gn(r) are determined from the eigenvalue
problem

G′′
n + (F − 1)G′

n/r − λnF
′Gn/r = 0, Gn(1) = G′

n(0) = 0, (3.4)

while the constants of order unity Cn are determined from matching with the numerical
solution of the circulation field in M, as explained below. Non-trivial solutions of (3.4)
exist for a discrete set of positive values λn = 0.43441, 3.62063, · · ·. The eigenfunction
G1 associated with the smallest eigenvalue is shown in figure 2. The resulting profile
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is normalized to give a maximum value equal to unity at r =0. This outer solution
is modified at distances r ∼ x, where the circulation must decrease to reach the
axis with a zero value. In this near-axis region the eigensolutions take the form
Γ =Cn[x + m−1/2εX0]

λngn(η) − m−1/2ε(q/8)λnCnx
λn−1g̃n, where the function gn(η) and

its accompanying first-order correction g̃n are obtained from

g′′
n + (f − 1)g′

n/η − λnf
′gn/η = 0; gn(0) = 0, gn(η → ∞) → 1, (3.5)

g̃′′
n + (f − 1)g̃′

n/η − (λn − 1)f ′g̃n/η = 0; g̃n(0) = 0, g̃n(η → ∞) → 1, (3.6)

with f = 4η2/(64/3 + η2) and η = r/(x + m−1/2εX0) representing the stream function
and the self-similar coordinate for Schlichting’s jet solution (2.11), the prime denoting
here differentiation with respect to this coordinate. The functions g1 and g̃1 associated
with the first eigenvalue are shown in figure 2.

Note that the above self-similar solution for the flow that recirculates towards the
backstep enters as boundary condition to determine the distribution of circulation in
region O that surrounds the developing jet J. Since the pressure differences associated
with the weak swirling motion are negligible in this region also, the axial and radial
velocity components are those given in RSL for the non-swirling jet, while the
circulation follows from integrating (2.4) written in terms of the rescaled variable
Γo = Γ/(C1ε

λ1/mλ1/2), with Rej ε entering as the relevant local Reynolds number.
The appropriate boundary conditions written in terms of X = x̂/ε are Γo =0 at
X = 0, Γo = (X + X0 − q/8)λ1G1(r) as X → ∞, and Γo = 0 and ∂Γo/∂r = 0 at r = 1 and
r → 0, respectively, for 0 < X < ∞. The integration would determine in particular the
distribution of Γo at the axis, corresponding to weak circulation of the fluid being
entrained by the jet as it develops.

3.2. Leading-order solution

The leading-order description for the circulation in M is determined by integating
numerically (3.1) with boundary conditions Γ = 0 at r =0 and at r = 1 for x > 0 and
with an initial condition obtained by evaluating the uniformly valid description

Γ =
16

x2

r2/x2

(64/3 + r2/x2)2
+ x(H (r) − 16/r2) + C1x

λ1 [G1(r) + g1(r/x) − 1] (3.7)

at x � 1. As can be seen, using the fluxes L and M as scales for the different variables
results in a parameter-free problem independent of the shape of the initial velocity
and circulation profiles Ui and Γi at the orifice.

The equations were integrated with a pseudo-transient finite-volume scheme,
described in detail in the appendix of RSL. The value of the constant C1 = 69.372
was obtained as part of the integration by performing a least-square fit of (3.7) to
the circulation profile obtained numerically at x � 1 at each time step. Isocontours
of circulation are plotted in figure 3, along with the corresponding transverse profiles
at five different locations. For completeness, the figure also shows the corresponding
streamlines and profiles of axial velocity from RSL for the swirl-free jet. In comparing
figure 3 with figure 7 of RSL one should bear in mind that the scaling used for x

here differs by a factor π1/2 from that used in RSL, so that the resulting eddy length
xs =0.188 also differs by the same numerical factor.

As explained in RSL, the axial velocity near the rear stagnation plane x = xs decays
linearly with distance, with a local similarity description of the form u = −(xs −x)F̄ ′/r ,
where F̄ is the similarity stream function. The profiles shown in figure 3 reveal that the
decay of the circulation as the stagnation plane x = xs is approached is much faster.
In seeking the corresponding local description for the circulation at xs − x � 1 one
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Figure 3. The leading-order solution for the confined swirling jet, including streamlines (upper
half of a), isocontours of circulation (lower half of a), and velocity and circulation profiles at
different downstream locations (b).

needs to investigate the existence of eigensolutions of the form Γ = C̄n(xs − x)λ̄nḠn(r),
where the eigenvalues λ̄n and associated eigenfunctions Ḡn(r) are determined from
the solution of

Ḡ′′
n + (F̄ − 1)Ḡ′

n/r + λ̄nF̄
′Ḡn/r = 0, Ḡn(1) = Ḡn(0) = 0. (3.8)

The eigenfunction corresponding to the smallest eigenvalue λ̄1 = 2.4665, normalized
to give a maximum unity value, is shown in figure 2. The value of the constant
C̄1 = 0.211 was obtained by comparing the local solution Γ = C̄1(xs − x)λ̄1Ḡ1(r) with
the circulation profile obtained as x → xs by numerical integration of (3.1). The
comparison in figure 2 between the normalized circulation profile Γ/Γmax obtained
numerically at x =0.177 and the eigenfunction Ḡ1 constitutes a satisfactory test for the
accuracy of the numerical scheme used in the integrations. Note that the eigensolution
Ḡ1 would enter as appropriate boundary condition as (xs −x)/ε → ∞ when describing
the circulation in the boundary region T, where Γ ∼ ελ̄1 , in a development that
parallels that outlined above for region O.

3.3. First-order correction

As shown in RSL, corrections of order ε can be accounted for in the BL computation
of the velocity field by including the terms of order ε in the initial condition for u.
Similarly, the solution for the circulation field in region M can be computed with
small relative errors of order ε2 by using

Γ = 16
(
x + m−1/2εX0

)−2
η2(64/3 + η2)−2 +

[
x + m−1/2ε(X0 − q/8)

]
(H − 16/r2)

+m−1/2ε(q/8)(H̃ − 16/r2) + C1

[
x + m−1/2ε(X0 − q/8)

]λ1
(G1(r) − 1)

+C1

[
x + m−1/2εX0

]λ1
g1(η) − m−1/2ε(q/8)λ1C1x

λ1−1g̃1(η) (3.9)

as the initial profile for Γ , to be evaluated at ε � x � 1. Note that the swirl number,
S, and the shape of the circulation distribution at the orifice, Γi , enter in the first-order
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Figure 4. Streamlines and circulation isocontours obtained for ε = 0.05 from the BL problem
(a) and from integration of the NS problem (b) for S = 0.3 (left-hand-side plots) and S = 0.6
(right-hand-side plots).

correction for the solution in the main region through the values of m and X0, while
the initial velocity distribution Ui enters in the correction through the values of m

and q .
The solution for the resulting circulation isocontours for ε = 0.05 is given in figure 4

for S = (0.3, 0.6). The values m =1−S2, q =1 and X0 = (0.271, 0.410) for S = (0.3, 0.6)
are employed in evaluating (3.9), corresponding to a uniform axial velocity with solid-
body rotation (Revuelta et al. 2004). Since the momentum flux for the developed jet
M , rather than the initial momentum flux J , is used in the scales for the different
flow variables in this region M, only small differences of order ε are observed in the
results.

To validate the asymptotic description, the NS axisymmetric problem given in (2.1)–
(2.9) with Ui =1 and Γi = 2(r/ε)2 was integrated numerically for different values of
Rej � 1 and ε � 1 and for different values of S. As in previous studies of swirling
jets (see e.g. Ruith et al. 2003), the boundary condition given in (2.9) for the velocity
components was replaced in the integrations by a radiation condition ∂/∂t+û∂/∂x̂ =0.
The integrations were performed with two different algorithms, the simple algorithm
(Patankar & Spalding 1972) for the pseudo-transient problem and the projection
method (Kim & Moin 1985; Bell, Colella & Glaz 1989) for the unsteady conservation
equations, giving insignificant differences when the final steady state was achieved.
For the sample results included in the comparisons of figure 4, the jet Reynolds
number was selected to be Rej = (366.9, 437.5) for S = (0.3, 0.6), thereby giving in
both cases [M/(πρ)]1/2/ν = 350 for the effective Reynolds number based on the flow
force M . To facilitate the comparison between the NS and the BL integrations, the
results of the former are represented using the streamwise coordinate x. As can be
seen, the degree of agreement is certainly satisfactory, with discrepancies becoming
somewhat larger for S = 0.6.

4. Vortex breakdown in confined jets with large expansion ratios
Although the above asymptotic description pertains to swirling jets with S < Sc,

some conclusions can be drawn regarding the vortex breakdown behaviour of confined
jets with ε � 1. Thus, we have seen that the pressure gradient induced by the swirling
motion is only significant in region J, whereas the azimuthal motion is very weak
elsewhere. Hence, vortex breakdown must occur in region J, at a critical value of
the swirl number, Sc, equal in the first approximation to that of a free swirling jet
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Figure 5. Streamlines and circulation isocontours obtained from the NS integrations with
[M/(πρ)]1/2/ν = 350 and S = 0.68 for ε =0.10 (a) and ε = 0.15 (b); the inset in (a) and the
thick line in (b) indicate the location of the recirculating bubble.

discharging into a stagnant atmosphere. The corrections to this leading-order result
can be anticipated by noting that the confinement slightly perturbs the flow of the
outer fluid being entrained by the jet, which is no longer stagnant when ε �=0. In
particular, the non-zero circulation existing outside the jet when ε �= 0 causes the jet
flux of angular momentum to increase, thereby promoting breakdown for smaller
values of Sc. The perturbations are small however, as seen above; the circulation of
the fluid surrounding the jet in the region of jet development x ∼ ε is order ε1+λ1

smaller than that at the orifice, so that the relative decrease Sc(ε =0) − Sc(ε) should
be of that order of magnitude.

To test the above ideas, a series of numerical integrations of the axisymmetric
NS equations was performed, providing the critical value of Sc and the modified
flow configuration emerging after breakdown for different values of ε. In the range of
Reynolds number considered, 100 � Rej � 500, the results were seen to be independent
of Rej . According to the integrations, vortex breakdown like that of a free jet occurs
only for sufficiently small values of ε � 0.15, leading to the appearance in the jet
development region J of a recirculating bubble of size comparable to the orifice
diameter. A sample of the resulting flow field is shown in figure 5(a). As can be
seen, the presence of the small recirculating bubble reduces the jet momentum flux
by a non-negligible amount, causing the toroidal vortex to be considerably shorter
than that shown in figure 4 for S <Sc. The computations give Sc = 0.66 ± 0.01 for
0.01 � ε < 0.15, confirming that the influence of the outer confinement on the critical
conditions for breakdown is very limited. It is of interest that the critical value
obtained, Sc = 0.66, is very close to the value S =0.64 reported by Revuelta et al.
(2004) for the failure of the quasi-cylindrical integration of the free jet, indicating
that the criterion of Hall (1972) predicts well the onset of breakdown in this case.
As a final comment on this type of breakdown, note that the order of magnitude of
the departures obtained, Sc − 0.66 = ± 0.01, is in agreement with the prediction of
the asymptotic analysis, Sc(ε = 0) − Sc(ε) ∝ ε1+λ1 , although the degree of accuracy
of the numerical scheme was not sufficient to determine the proportionally constant
[Sc(ε = 0) − Sc(ε)]/ε

1+λ1 . The computation of this proportionality factor by extending
to a higher order the analysis of region J, with account taken of the small relative
circulation of order ε1+λ1 of the entrained fluid, does not seem to be amenable to a
simple perturbation scheme.
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For values of ε � 0.15 vortex breakdown no longer occurs in region J, but rather
at the rear end of the toroidal vortex, where the stream tube bounding the toroidal
vortex opens up, yielding a recirculating bubble of size comparable to that of the
confining duct. The resulting toroidal vortex is considerably shorter, as can be seen
to occur for ε = 0.15 in figure 5(b). The streamlines in the figure indicate that vortex
breakdown is similar in this case to that encountered in pipes, with the separating
stream tube acting in this case as a diverging pipe (Buntine & Saffman 1995). The
behaviour is qualitatively similar for larger ε, with breakdown appearing for smaller
Sc, e.g. Sc = (0.65, 0.58, 0.50) for ε =(0.15, 0.25, 0.50).
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